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An equation has been obtained which allows the unsteady temperature
field inside multidimensional bodies to be calculated from kunown
temperatures along the coordinate axes, in nonlinear heat-condition
processes.

It is well known that in the majority of practical
problems (especially under conditions of intense heat-

ing), the heat flux at the surface of a body is associated

with the surface temperature by the nonlinear relation

(grad e)surf = f(esurf) s (1)

or, using the form of boundary conditions of the third
kind,

(grad 8)surf= Bi (esurf) ( [ esurf)'

A typical example of such high-temperature heating
is radiative heat exchange at a surface, when the bound-
ary condition is given by the Stefan-Boltzmann law

(grad 8) .= Sk (1 — Bsyrp)- (2)

surf

The analytical study of such processes presents
great mathematical difficulty, and therefore, numer-
ical methods of solution with high-speed computers
{1-3] are used in the majority of cases.

Interesting attempts at theoretical investigation
of unsteady heat conduction with various nonlinear
boundary conditions have been made by Biot [4],
using the variational prineciple. Calculation of the
temperature field with nonlinear integral equations
has been performed in [5, 6].

Reference [7] describes a simple and reliable
method of computing unsteady heat conduction with
boundary conditions of type 1. Using this method we
have been able to establish the relation, important
for technical applications, between the temperatures
inside multidimensional bodies and the temperature
distribution along the coordinate axes, for a number
of special cases of the functional dependence (1).

Let us demonstrate the derivation of the equation
in an example of heating of a two-dimensional body.

Following the method of [7], we can write the sys-
tem of differential equations describing the unsteady
temperature field in the rectangular region 2Ry X 2Ry
as
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which may be transformed by means of the function
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where p is a parameter, to the form
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Here 6 = T/ Ty, where Ty, is the temperature of the
heating medium, 7 () is a nonlinear function of tem-
perature 6; K is a constant,

The purpose of this transformation is to linearize
boundary conditions (4)—(5) and reduce them to the
ordinary linear form of boundary conditions of the
third kind., Then the nonlinear complex in (10) in the
transformed heat-conduction equation (9) can be re-
duced to the required minimum by appropriate choice
of the parameter p. Recommendations are made in
[7] regarding the choice of parameter p when the non-
linear boundary condition (1) is given in general form;
for the particular cases of radiative heating (2), and
also for radiative-convective heating, the determina-
tion of p is given in {8,9].

Now, using the solution of problem (9)—(14) for
@{x, y, 7) = 0[10], and transformation (8), we find
the temperature field 0 = 0(x, y, 7).

In accordance with the well-known property of the
standard form (11), the temperature W (x, y, 7) with
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Comparison of Values of Relative Temperature at the Center
of an Infinite Prism, Obtained by Various Methods

Data f leulati According
Ny ata for computer calculation to (18) Error §, per
cent
6 (0; 0; 708; Fo) | 8(0; 630; 0; Fo) 0?7%%3531%) 9 (0; 0; Fo) | 60; 0; Fo)
0.10 0.5627 0.4589 0.7108 0.1767 0.2191 24.00
0.20 0.6943 0.6172 0.8284 0.3320 0.3557 7.14
0.30 0.7819 0.7249 0.8831 0.4982 0.5100 2.37
0.40 0.8435 0.8016 0.9172 0.6315 0.6378 1.00
0.50 0.8911 0.8612 0.9408 0.7317 0.7323 0.08
0.75 0.9506 0.9367 0.9741 0.8801 0.8806 0.06
1.00 0.9783 0.9722 0.9886 0.9471 0.9473 0.02
1.25 0.9904 0.9877 0.9950 0.9766 0.9764 0.02
1.50 0.9958 0.9946 0.9978 0.9897 0.9897 0.00
2.00 0.9992 0.9989 0.9996 0.9980 0.9980 0.00
¢, vy, T) = 0, in the regular temperature regime sit- Arth 0 (xp, 4, T) + B(x, Yo, T)
uation, can be expressed in the form a 14 0 (xy, 4, ©) 0(%, Yo, T)
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For our case
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Now, by giving certain fixed values to the coordi-
nates x = x,, and then y = y;, we obtain
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After substituting X (x) and Y (y) into (15) we obtain
a general relationship between the relative tempera-
tures inside the body and the temperature distribution
along the coordinates x,, y: '
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The dependence for three-dimensional bodies is
obtained analogously.

For the special case of radiative heating (boundary
condition (2)), Eq. (18) takes the form
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Our calculations and analysis of other experimental
data confirm the theoretical relationships (18) and (19).

As an example we examine heating of a prism-
shaped block of square section 2R X 2R, with initial
temperature 8;,;; = 0. 15. The nonlinear boundary con-

i
dition (1) is given by the expression

(grad e)surf = Bio Bi (ﬁsurf) (1 - esurf) =

= 2(1 + 05 6surf)(l“‘esurf)'

The table compares values of relative temperatures
at the center of an infinite prism 6(0, 0, Fo), as ob-
tained on the "Minsk~1" computer, to those found on
the basis of Eq. (18). The relative coordinates x,/R
and y,/R were 0. 630 and 0.708, respectively.

As can be seen from the table, with increase of Fo
the central point of the infinite prism gradually reaches
a regular thermal regime, and the temperature varia-
tion there begins to conform to Eq. (18).

Equation (18) allows us to reconstruct the unsteady
temperature field within multidimensional bodies from
readings of thermocouples along the coordinate axes.
The origin of coordinates can be located at any point
inside the body.

It should be noted in particular, that when using
relationships of the type (19), obtained from (18),
there is no need to know the physical parameters of
the material: thermal conductivity, density, specific
heat, and surface emissivity.

Relation (18) is strictly valid for a regular thermal
regime, and can be used in investigations of heat pro-
pagation processes.
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